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Abstract

Methods based on path integral molecular dynamics (PIMD) are a family of
chemical dynamics techniques which are a common way of treating nuclear
quantum effects in condensed phase. One of the approximations shared by
all of these is the neglect of quantum coherence. This is usually a reasonable
assumption, because the large number of interactions present in a solid or a
liquid typically leads to quick decoherence. To better understand the role that
this assumption may have, we decided to explore a method for exact quan-
tum dynamics in a dissipative environment. Hierarchical equations of motion
(HEOM) are a computational method that describes time evolution of a system
quantum density matrix coupled to a bath of harmonic oscillators, which in
the appropriate limits yields the exact results. In this work, quantum HEOM
were implemented both in their high-temperature form, omitting Matsubara
frequency terms present in the bath time autocorrelation function, as well as
the full form, which results in a many-dimensional set of coupled differential
equations. The behaviour of HEOM was studied at various limits, including
the low-temperature breakdown, and the importance of the Matsubara terms
has been demonstrated. Carrying out a Wigner transform of HEOM, one can
obtain a position-momentum phase space analogue, which at the limit of high
temperature gives completely classical HEOM. These were implemented and
compared to the quantum version. In addition, the computational program
was tested by reproducing the results of Sakurai and Tanimura on the Morse
oscillator and preliminary work has been done on the OH potential of a hy-
drated oxonium ion. Drawing from this work, we propose future studies of the
blue shift, which currently plagues PIMD-based dynamics methods in strongly
anharmonic potentials, and of the role of an explicit bath and quantum coher-
ence in condensed phase dynamics.
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Chapter 1

Introduction

Advances of molecular dynamics have made it possible to explain many chem-

ical and physical phenomena from first principles.1 For many purposes, atomic

nuclei can be treated classically, but over the past few decades the shortcom-

ings of this approximation have become increasingly apparent resulting in the

emergence of a new field of quantum chemical/nuclear dynamics.2

For quantum nuclear dynamics in condensed phase, where the coherence

effects can be neglected, a range of path integral based methods have been

developed. Using Feynman path integrals, one can obtain an isomorphism

which maps the quantum system onto an extended classical system, called a

ring polymer.3 These polymers exactly represent quantum statistics, and clas-

sical dynamics is routinely used to sample thermal averages of static variables

in a method called path integral molecular dynamics (PIMD).1 However, all

the dynamics present is considered to be a mathematical tool, rather than a

representation of reality. To calculate dynamical variables, like time correla-

tion functions, a range of PIMD-based methods have been proposed, includ-

ing centroid molecular dynamics (CMD),4,5 ring polymer molecular dynam-

ics (RPMD),6 linearised semi-classical initial value representation (LSC-IVR)7

and related methods (PA-CMD, TRPMD, etc.).2 All of these were originally

ad hoc propositions that were shown to yield correct answers in various lim-

its. In 2015 a new theory has been proposed, called the Matsubara dynamics,

which gives a quantum Boltzmann conserving classical component of the ex-

act quantum dynamics, neglecting only real-time quantum coherence. It was

shown that all the previously mentioned methods are approximations to this

more exact treatment.8,9

The most explicit way of accounting for the environment in condensed

phase is by directly including the solvent molecules and converging the simu-

lation with respect to the size of the box. This will naturally yield the most

accurate results, but becomes impractical for larger systems or more computa-
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CHAPTER 1. INTRODUCTION

tionally expensive methods.10 An alternative is treating the surroundings as a

non-specific bath, rather than explicit molecules, which is typically modelled as

an ensemble of harmonic oscillators. We can push the abstraction even further

and generalise the effect of the bath into new equations of motion only for the

system of interest. Termed dissipative dynamics, for classical particles such

treatment is described using the (generalised) Langevin equation or in case of

probability distributions using the Fokker-Planck equation.11,12 However, there

is not a simple way of deriving equivalent quantum equations, which poses a

severe limitation given the computational cost of quantum methods.

If the bath is considered to have an effectively infinite temperature, it is

possible to use the stochastic Liouville equation13 and this approach has seen

many successes including the prediction of NMR and Mössbauer spectra and of

dielectric relaxation.14 However, in this treatment only fluctuations are present

and no dissipation. This means that particles in a continuous coordinate, like

a potential well, can never reach thermal equilibrium, which limits its applica-

bility.14 To overcome this drawback, Tanimura proposed a new approach called

the hierarchical equations of motion (HEOM).15 These were based on his pre-

vious work with Kubo16,17 on stochastic and dynamic approaches to quantum

decoherence and further developed in collaboration Wolynes.18,19 HEOM can

be used to derive equations of motion for a reduced density matrix of a system

in a dissipative bath, which in appropriate limits are exact. These result in a

theoretically infinite hierarchy of coupled differential equations in an infinite-

dimensional space. However, as shown in the literature, this hierarchy can

be effectively truncated to give a viable computational method.14,18,19 HEOM

were used to calculate a wide range of phenomena like vibrational spectra and

electronic spectra, including multi-dimensional and non-linear spectroscopy,20

reaction rates21 and even energy transfer in light harvesting proteins.22

The aim of this work was to implement the hierarchical equations and to

understand their behaviour under a range of conditions. This was to be carried

out both in the high-temperature approximation, when Matsubara terms in

the bath time autocorrelation function are neglected, as well as in the full

low-temperature HEOM treatment, where a more complicated hierarchy of

differential equations has to be solved. In addition, HEOM can be Wigner

transformed into the position-momentum phase space, which at appropriate

limits gives fully classical HEOM. The ability to calculate the exact behaviour

of the dissipative system will be an invaluable tool in future studies of the

shortcomings of the Matsubara-dynamics based methods including the role of

a bath and of quantum coherence.
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CHAPTER 1. INTRODUCTION

In the next chapter we recapitulate the background theory for quantum

dissipative dynamics and guide the reader through the crucial steps of the

HEOM derivation. In Chapter 3 we present the results of our computational

implementation of the HEOM and discuss their importance. We conclude

by summarising our findings and laying down propositions for future work in

Chapter 4.

3



Chapter 2

Background theory

In this chapter we present the theoretical background, important derivations

and approximative treatments required for this work. In section 2.1 a brief

introduction to the description of quantum systems using density operators

based on standard literature is given.11,12,23–25 In section 2.2 the system-bath

model used throughout this work is described. In sections 2.3–2.5 the reader is

guided through the derivation of the hierarchical equations of motion using the

Feynman-Vernon functional. The following section 2.6 explains how the infinite

hierarchy can be truncated in a numerical simulation, and the last section 2.7

shows that using Wigner transforms we can obtain a classical analogue of the

quantum equations of motion.

2.1 Density operators

2.1.1 Pure states

When systems are described in quantum physics, a typical object to use is a

wave function ψ(t), which satisfies Schrödinger’s equation

i~
∂

∂t
|ψ〉 = Ĥ|ψ〉. (2.1)

An alternative way of describing the system is using a density operator ρ̂,

which for a pure quantum state is defined as

ρ̂ ≡ |ψ〉〈ψ|. (2.2)

If we expand ψ in a basis set {ϕi} as ψ =
∑

n cnϕn, then the density operator

can be expressed as

ρ̂ =
∑
m

∑
n

cmc
∗
n|ϕm〉〈ϕn| (2.3)

4



CHAPTER 2. BACKGROUND THEORY

or as a matrix in the space of the basis vectors, which is how density operators

are handled numerically,

ρmn = cmc
∗
n. (2.4)

The diagonal elements then give the probabilities of finding the system in the

particular state, resulting in the normalisation condition Tr[ρ̂] = 1, where Tr

denotes the quantum mechanical trace. In addition, for any operator Â, the

expectation value can be obtained as 〈Â〉 = Tr[Âρ̂], which can be shown by

expanding in any complete basis.

The equivalent of the Schrödinger’s equation for density matrices is the

quantum Liouville equation

i~
∂ρ̂

∂t
= Ĥρ̂− ρ̂Ĥ = L̂ρ̂, (2.5)

where L̂ is the Liouvillian superoperator.

2.1.2 Statistical mixtures

In many physical situations we have ensembles of particles, where each particle

can have many quantum states, but where the overall quantum state of the

system is either not known or not of interest. Then, assuming that the indi-

vidual particles have random complex phases relative to each other (i.e. the

ensemble is not coherent), we can extend the definition of the density opera-

tor. If the probability of measuring quantum state ψj is Pj, then the density

operator is

ρ̂ =
∑
j

Pj|ψj〉〈ψj|. (2.6)

This is a very natural extension of the previous definition, because it preserves

many of the properties of the pure state density operator. The diagonal ele-

ments still give the probability of finding the system in the specific state, but

now also statistically averaged over the ensemble. The trace of a product with

an operator 〈Â〉 = Tr[Âρ̂] now gives the expectation value for the distribution.

Importantly, the quantum Liouville equation (eq. 2.5) still holds.

2.2 System-bath model

Let us consider a model one-dimensional system coupled to a bath consisting

of harmonic oscillators. The system is fully described by its mass m and

potential VS(q̂). The bath is described by the frequencies {ωj}, masses {mj}
and coupling coefficients {cj} of the oscillators. The full Hamiltonian can then

5



CHAPTER 2. BACKGROUND THEORY

be expressed as

Ĥ =
p̂2

2m
+ VS(q̂) +

∑
j

[
p̂2
j

2mj

+
mjω

2
j

2

(
x̂j −

cj q̂

mjω2
j

)2
]
, (2.7)

where p̂ and q̂ describe the system, and {p̂j} and {x̂j} describe the bath. We

can split the full Hamiltonian into three parts

Ĥ = ĤS + ĤB + ĤSB. (2.8)

The system Hamiltonian is

ĤS =
p̂2

2m
+ V (q̂), (2.9)

where

V (q̂) = VS(q̂) +
aren

2
q̂2 (2.10)

with

aren =
∑
j

c2
j

mjω2
j

, (2.11)

the bath Hamiltonian is

ĤB =
∑
j

[
p̂2
j

2mj

+
mjω

2
j

2
x̂2
j

]
(2.12)

and the interaction Hamiltonian is

ĤSB = −X̂(x̂)q̂, (2.13)

where X̂ is the collective bath coordinate operator given by

X̂(x̂) =
∑
j

cjx̂j, (2.14)

where the vector x̂ = {x̂j}. The reason for this form, which includes the renor-

malisation potential, is to maintain translational symmetry for VS(q̂) = 0.26

For a set of states {|qi,xi〉} in the Hilbert space of system and bath coor-

dinates with probabilities {Pi}, the density operator is

ρ̂(q,x) =
∑
i

Pi|qi,xi〉〈qi,xi|, (2.15)

where the quantities in parentheses denote the Hilbert space in which the

6



CHAPTER 2. BACKGROUND THEORY

density operator is defined. A corresponding density matrix in the position

representation would then be

ρ(q,x; q′,x′) = 〈q,x|ρ̂|q′,x′〉, (2.16)

where the functions in parentheses denote the coordinate values at which the

matrix element is calculated.

In the Schrödinger picture, which we shall adopt, the operators are constant

in time, while the wave functions evolve. However, the density operator is an

exception to this rule since it is an operator composed of wave functions. To

denote this time dependence we shall use the notation

ρ̂(q,x; t = τ) = ρ̂τ (q,x) and ρ(q,x; q′,x′; t = τ) = ρτ (q,x; q′,x′). (2.17)

2.3 Feynman-Vernon influence functional

We aim to obtain the equations of motion for the system. The state of the

full system-bath set-up is described by a density operator ρ̂(q,x). At a non-

zero time, the density operator can be expressed using the time propagation

operators as

ρ̂t(q,x) = e−iĤ(q,x)t/~ρ̂0(q,x)e+iĤ(q,x)t/~. (2.18)

Given that we are interested only in the state of the system at time t, we can

trace out the bath degrees of freedom to obtain a reduced density operator

ρ̂t(q) =

∫
dx〈x|ρ̂t(q,x)|x〉, (2.19)

where
∫

dx denotes integration over all bath degrees of freedom.

In addition, we shall assume that the whole system was initially in a fac-

torised state, i.e. ρ̂(q,x) = ρ̂(q)ρ̂(x) and that the bath was in a thermal equi-

librium (ρ0(x,x′) = 〈x|e−βĤB/ZB|x′〉), but not in equilibrium with the system.

This can be done without loss of generality, because we can account for initial

correlations once we obtain the hierarchy of density operators.15 We obtain

ρ0(q,x; q′,x′) = ρ0(q, q′)ρ0(x,x′) = ρ0(q, q′)〈x|e
−βĤB

ZB

|x′〉 (2.20)

where the inverse temperature β = 1/(kBT ). With this initial matrix and

using standard identities, the density matrix at time t can be cast into the

7



CHAPTER 2. BACKGROUND THEORY

form‡

ρt(qt, q
′
t) =

∫
dq0

∫
dq′0

∫
dx0

∫
dx′0

∫
dx 〈qt,x|e−iĤt/~|q0,x0〉

× ρ0(q0, q
′
0)〈x0|

e−βĤB

ZB

|x′0〉〈q′0,x′0|e+iĤt/~|q′t,x〉 (2.21)

This integral can be re-written using the Feynman-Vernon influence functional

as27

ρt(qt, q
′
t) =

∫
dq0

∫
dq′0

∫ qt=q(t)

q0=q(0)

D[q(τ)]

∫ q′t=q
′(t)

q′0=q′(0)

D[q′(τ)] ρ0(q0, q
′
0)

× Ft(q(τ), q′(τ))Gt(q(τ), q′(τ)), (2.22)

where
∫
D[q(τ)] denotes a Feynman path integral,3 Gt is the propagator/kernel

for an isolated system and Ft is the influence functional. The propagator is

given by

Gt(q(τ), q′(τ)) = exp

[
i

~
[
SS(q(τ); t)− SS(q′(τ); t)

]]
, (2.23)

where the classical action for an isolated system is †

SS(q(τ); t) =

∫ t

0

dτ L(q̇, q, τ) =

∫ t

0

dτ

[
mq̇2(τ)

2
− V

(
q(τ)

)]
, (2.24)

with L denoting the Lagrangian. All system-bath interaction is contained in

the influence functional which is given by

Ft(q(τ), q′(τ)) =

∫
dx0

∫
dx′0

∫
dx

∫
D[x(t)]

∫
D[x′(t)] ρ0(x0,x

′
0)

×exp

[
i

~
[SB(x(τ); t)− SB(x′(τ); t) + SSB(q(τ),x(τ); t)− SSB(q′(τ),x′(τ); t)]

]
,

(2.25)

where SB and SSB are the classical actions for the bath and for the interaction

‡The Feynman path integral notation requires position to be a function of time. This
can be at first sight contradictory to the Schrödinger picture, in which the position operator
is time independent. It can be reconciled by considering qτ ≡ q(τ) with τ 6= t as a dummy
variable emerging from the identity Î =

∫
dqτ |qτ 〉〈qτ |, while qt ≡ q is the position basis set

in which the density matrix is represented.
†We have moved from the operator notation to the eigenvalues in the position basis,

i.e. q̂ → q since these are the classical actions.

8
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respectively and are given by

SB(x(τ); t) =

∫ t

0

dτ
∑
j

[
mjẋ

2
j(τ)

2
− mjω

2
j

2
x2
j(τ)

]
(2.26)

and

SSB(q(τ),x(τ); t) =

∫ t

0

dτ
[
+X(x(τ))q(τ)

]
. (2.27)

The functional integration in eq. 2.25 can be done exactly for this system and

yields26

Ft(q(τ), q′(τ)) = exp

[
− 1

~2

∫ t

0

dτ ′
∫ τ ′

0

dτ [q(τ ′)− q′(τ ′)]

× [α(τ ′ − τ)q(τ)− α∗(τ ′ − τ)q′(τ)]

]
, (2.28)

where α(t) = 〈X̂(τ)X̂(τ + t)〉 is the time autocorrelation function of the col-

lective bath coordinate given by

α(t) = ~
∑
j

c2
j

2mjωj

(
e−iωjt +

e+iωjt + e−iωjt

eβ~ωj − 1

)
. (2.29)

Following the convention in the literature, we can define

q◦(t) ≡ q(t) + q′(t) and q×(t) ≡ q(t)− q′(t), (2.30)

which in operator notation is equivalent to the commutator and anti-commutator

superoperators

Â◦B̂ ≡ ÂB̂ + B̂Â = [Â, B̂]+ and Â×B̂ ≡ ÂB̂ − B̂Â = [Â, B̂]. (2.31)

This simplifies the formula for the influence functional to

Ft(q(τ), q′(τ)) = exp

[
− 1

~2

×
∫ t

0

dτ ′q×(τ ′)

∫ τ ′

0

dτ [α(τ ′ − τ)q(τ)− α∗(τ ′ − τ)q′(τ)]

]
. (2.32)

Considering the real and imaginary parts of α(t)

αR(t) = ~
∑
j

c2
j

2mjωj
cos(ωjt) coth

(
β~ωj

2

)
, (2.33)

9
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αI(t) = −~
∑
j

c2
j

2mjωj
sin(ωjt), (2.34)

where

αR ≡ Re{α}, αI ≡ Im{α}, (2.35)

we can further simplify the influence functional to

Ft(q(τ), q′(τ)) =

exp

[
− 1

~2

∫ t

0

dτ ′ q×(τ ′)

∫ τ ′

0

dτ

(
αR(τ ′ − τ)q×(τ) + iαI(τ

′ − τ)q◦(τ)

)]
(2.36)

The functional integrals in eq. 2.22 can be rewritten as infinite sums and

products in discretised time following Feynman’s definition3 to give

ρt(qt, q
′
t) =

∫ ′
dq

∫ ′
dq′ ρ0(q0, q

′
0)Ft(q, q

′)Gt(q, q
′), (2.37)

where q = {q0, . . . , qn, . . . , qN}, with qN ≡ qt. The integrals are
∫ ′

dq =∫
dq0 · · ·

∫
dqn· · ·

∫
dqN−1, i.e. integrals over all qn’s except for qt. In this

notation the influence functional is given by

Ft(q, q
′) = exp

[
− ε

2

~2

N∑
n=0

wnq
×
n

n∑
m=0

wm

(
αR(tn − tm)q×m + iαI(tn − tm)q◦m

)]
,

(2.38)

where tn = nt/N , ε = t/N and

wn =

1/2 for n = 0, N

1 otherwise
, (2.39)

and Gt(q, q
′) is given by†

Gt(q, q
′) = 〈qN |e−iĤSε/~|qN−1〉〈qN−1|e−iĤSε/~|qN−2〉 . . . 〈q1|e−iĤSε/~|q0〉
× 〈q′N |e+iĤSε/~|q′N−1〉〈q′N−1|e+iĤSε/~|q′N−2〉 . . . 〈q′1|e+iĤSε/~|q′0〉. (2.40)

†By using Trotter factorisation, splitting exp(−iĤ/~) into the kinetic and potential part,
inserting position representation identities Î =

∫
dqτ |qτ 〉〈qτ | and evaluating the kinetic en-

ergy operator in position representation as 〈q1| exp(−iεT̂ /~)|q2〉 =
√

2π~m/(εi) exp(im(q2−
q1)2/(2~ε)), we can show that

∫ q
q0
Dq(τ) exp( i

~S(q(τ), t)) = 〈q0| exp(−iĤ/~)|qt〉.

10
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2.4 Bath description

Given the form of the equations presented in the previous section, the whole

harmonic oscillator bath can be represented using a single function J(ω), typ-

ically termed the spectral density, which we shall define as

J(ω) = ~
∑
j

c2
j

2mjωj
δ(ω − ωj). (2.41)

This simplifies the equations for α’s to

α(t) =

∫ ∞
0

dω J(ω)

(
e−iωt +

e+iωt + e−iωt

eβ~ω − 1

)
, (2.42)

αR(t) =

∫ ∞
0

dω J(ω) cos(ωt) coth

(
β~ω

2

)
, (2.43)

and

αI(t) = −
∫ ∞

0

dω J(ω) sin(ωt), (2.44)

as well as the expression for aren

aren = 2

∫ ∞
0

dω
J(ω)

~ω
. (2.45)

Negative frequencies of harmonic oscillators in the bath are not physical, but

if we define J(ω) to be an odd function, i.e. J(ω) = −J(−ω),‡ we can express

α’s also as

α(t) =

∫ ∞
−∞

dω J(ω)
e+iωt

eβ~ω − 1
, (2.46)

αR(t) =
1

2

∫ ∞
−∞

dω J(ω) cos(ωt) coth

(
β~ω

2

)
(2.47)

and

αI(t) = −1

2

∫ ∞
−∞

dω J(ω) sin(ωt), (2.48)

which, as we shall see, may be easier to evaluate.

Following the literature16,26,28,29, we have chosen the Debye bath (also

Drude bath or Ohmic bath with Lorentz-Drude cutoff), the spectral density

of which takes the form

J(ω) =
~η
π

γ2ω

γ2 + ω2
, (2.49)

where η is the strength of the bath coupling and γ is the cutoff frequency.

‡This is equivalent to redefining J ≡ ~
∑
j

c2j
2mjωj

[δ(ω − ωj)− δ(ω + ωj)]. Note that this

does not retain the normalisation of J , but doubles it.
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The form of α is then

α(t) =
~ηγ2

π

∫ ∞
−∞

dω
ω

γ2 + ω2

e+iωt

eβ~ω − 1
, (2.50)

which can be evaluated by contour integration in the complex plane along con-

tours z1 = R, R ∈ (−∞,∞) and z2 = lim
R→∞

Re−iθ, θ ∈ [0, π]. This contour con-

tains poles at z = −iγ and at z = −iγk where γk = 2πk/(β~), k = 1, 2, 3, . . .

are the Matsubara frequencies. This yields

α(t) =
∞∑
k=0

Cke
−γkt, (2.51)

where γ0 ≡ γ and where the coefficients are given by

C0 =
~ηγ2

2

[
cot

(
β~γ

2

)
− i

]
,

Ck>0 =
2ηγ2

β

γk
γ2
k − γ2

.

(2.52)

In the rest of this work we shall refer to the k > 0 terms as the Matsubara

terms because of the appearance of Matsubara frequencies γk>0. The formulae

for the real and imaginary parts are then

αR(t) =
~ηγ2

2
cot

(
β~γ

2

)
e−γt +

∞∑
k=1

Cke
−γkt (2.53)

and

αI(t) = −~ηγ2

2
e−γt. (2.54)

For the renormalisation coefficient in eq. 2.45 the chosen spectral density gives

aren = ηγ. (2.55)

12



CHAPTER 2. BACKGROUND THEORY

2.5 Hierarchical equations of motion (HEOM)

To obtain the equations of motion for the density matrix, we differentiate

it with respect to time. This is most easily done with the continuous form

of equations (eq. 2.22 for ρ and eq. 2.32 for Ft). Firstly we shall assume the

general form of α given by eq. 2.51. Carefully differentiating and observing the

emerging patterns, one can obtain an infinite network of coupled differential

equations for a hierarchy of density matrices30,31

∂ρ̂{0}
∂t

= − i

~
L̂ρ̂{0} −

i

~
q̂×

∞∑
k=0

ρ̂{0}+k

. . .

∂ρ̂n
∂t

= −
(

i

~
L̂+

∞∑
k=0

nkγk

)
ρ̂n −

i

~
q̂×

∞∑
k=0

ρ̂n⊕k
− i

~

∞∑
k=0

nk

(
Ckq̂ρ̂n	k

− C∗k ρ̂n	k q̂
)

. . .

(2.56)

where the Liouvillian is given by

L̂ρ̂ = Ĥ×S ρ̂ = ĤSρ̂− ρ̂ĤS

or

L(q, q′) = HS(q)−HS(q′)

(2.57)

and where ρ̂n are the auxiliary density operators (ADOs). These density op-

erators are indexed by infinite-dimensional vectors n = {nk}, k = 0, 1, 2, . . .

Each component of these vectors can take all non-negative integer values nk =

0, 1, 2, . . . We have also introduced the notation n
⊕/	
k = {n0, . . . , nk−1, nk ±

1, nk+1, . . . }. The ρ̂n with zero vector n = {0} = {nk}, nk = 0 ∀k is the

physical density matrix ρ̂t ≡ ρ̂{0} while all the ADOs are just an algebraically

convenient way of handling these complex equations of motion, but bear no

direct physical significance. It is also useful to define the tier of an ADO as

n =
∞∑
k=0

nk. (2.58)

13
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The ADOs are given by

ρn(q, q′) =

∫
dq0

∫
dq′0

∫ qt=q(t)

q0=q(0)

D[q(τ)]

∫ q′t=q
′(t)

q′0=q′(0)

D[q′(τ)] ρ0(q0, q
′
0)

× Ft(q(τ), q′(τ))Gt(q(τ), q′(τ))
∞∏
k=0

[(
− i

~

)nk

fnk
k (q(τ), q′(τ), t)

]
, (2.59)

with

fk(q(τ), q′(τ), t) =

∫ t

0

dτe−γk(t−τ)[Ckq(τ)− C∗kq′(τ)], (2.60)

which applies to ρ{0}(q, q′) as well, hence the name auxiliary density operator.

Knowing the form of the coefficients Ck for the chosen bath, we can simplify

the equations of motion using the fact that only C0 has a non-zero imaginary

part to obtain

∂ρ̂n
∂t

= −
(

i

~
L̂+

∞∑
k=0

nkγk

)
ρ̂n −

i

~
q̂×

∞∑
k=0

ρ̂n⊕k

− i

~
(in0C

I
0)q̂◦ρ̂n	0 −

i

~

∞∑
k=0

nkC
R
k q̂
×ρ̂n	k , (2.61)

with CR
k = Re{Ck}, which affects only C0, and CI

0 ≡ Im{C0}.

2.6 Truncating the infinite hierarchy

So far, all the equations were numerically exact within the given approxima-

tions. However, it is of course impossible to simulate an infinite hierarchy on

a computer. Therefore, a truncation scheme is necessary. Following notation

of Shi and Chen21,32, we shall introduce two parameters: K and L.

K is the maximum index included in the exponential series of the time

autocorrelation function α, turning eq. 2.51 into

α(t) =
K∑
k=0

Cke
−γkt, (2.62)

which propagates to all summations and products indexed by k in all definitions

and the equations of motion.

L is the maximum tier (defined by eq. 2.58) present among the ADOs in

the hierarchy.

Before we look into the truncation in both of these parameters, it is useful

to consider a scaling scheme.

14
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2.6.1 Scaling

Shi and Chen21,32 proposed scaling ADOs as

ρ̃n =

( ∞∏
k=0

nk!|Ck|nk

)−1/2

ρn, (2.63)

which gives rise to equations of motion

∂ρ̂n
∂t

= −
(

i

~
L̂+

∞∑
k=0

nkγk

)
ρ̂n −

i

~
q̂×

∞∑
k=0

√
(nk + 1)|Ck|ρ̂n⊕k

− i

~

∞∑
k=0

√
nk/|Ck|

(
Ckq̂ρ̂n	k

− C∗k ρ̂n	k q̂
)
. (2.64)

The scaling does not affect the physical density matrix or its dynamics. It also

ensures that for large n the amplitude of ADOs tends to zero.

2.6.2 K: Truncating Matsubara terms

High temperature approximation

At high temperatures, the Matsubara frequencies γk = 2πk/(β~) grow suffi-

ciently to effectively truncate the series of the bath time autocorrelation func-

tion α (eq. 2.51) at k = 0. This is equivalent to saying lim
β→0

exp(−γkt) = 0 for

k 6= 0. This simplifies eq. 2.61 to

∂ρ̂n
∂t

= −
(

i

~
L̂+ nγ

)
ρ̂n −

i

~
q̂×ρ̂n+1

− n0ηγ
2

2
q̂◦ρ̂n−1 −

i

~
n~ηγ2

2
cot

(
β~γ

2

)
q̂×ρ̂n−1, (2.65)

where ADOs are no longer indexed by a K-dimensional vector n, but only

by its first component n0, which is now equivalent to the tier of the ADO n

(eq. 2.58). Thus the space of ADOs was “flattened” into one dimension, where

each ADO depends only on the ADO above and below in the hierarchy.

Simple truncation

Terms up to k = K are included explicitly and all terms with k > K are

discarded with no additional correction being made.
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Ishizaki-Tanimura scheme

Ishizaki and Tanimura have suggested a Markovian treatment of the non-

explicit k-terms.14,30,33 This leads to new terms in the equations of motion

(eq. 2.56), giving

∂ρ̂n
∂t

= −
(

i

~
L̂+

K∑
k=0

nkγk + Ξ̂

)
ρ̂n

− i

~
q̂×

K∑
k=0

ρ̂n⊕k
− i

~

K∑
k=0

nk

(
Ckq̂ρ̂n	k

− C∗k ρ̂n	k q̂
)
, (2.66)

where the low T correction term Ξ̂ is given by

Ξ̂ =

(
+

η

β~2
− 1

~2

K∑
k=0

CR
k

γk

)
q̂×q̂× (2.67)

This approximation should be justified as long as γK � Ω0, where Ω0 is the

characteristic frequency of the system.30

2.6.3 L: Truncating ADO level

Simple truncation

In this scheme, the ADOs are set to zero for tier n > L (where n is given by

eq. 2.58). One can simply converge the calculation with respect to L. However,

if ADOs are scaled according to Shi and Chen as shown in section 2.6.1, then

termination can be justified by a negligible magnitude of the discarded ADO.

This can be implemented in the simulation as a pruning step, where at regular

intervals all ADOs below the threshold are discarded.

Anchor equation

The second method, initially proposed by Tanimura,18,30 uses an anchoring

equation. Tanimura shows that for large enough tier n, ADOs can be ap-

proximated by an expression independent of n + 1’st ADOs. However, when

employed in calculations, scaling and simple truncation was found to be a more

robust way of truncating L.
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2.6.4 Initial state

Since we assumed the initial state to be of the factorised form (eq. 2.20),

functions fk(q(τ), q′(τ), t = 0) = 0 and only the physical density operator

contributes at zero time, giving

ρ{0}(q, q
′; t = 0) = ρ0(q, q′), (2.68)

ρn(q, q′; t = 0) = 0, n 6= {0}. (2.69)

This means that we do not have to evaluate fk’s explicitly since all ADOs

emerge naturally during time evolution of the physical density matrix using

HEOM. As Tanimura has shown, if a correlated initial state is required, it can

be achieved by having non-zero ADOs at t = 0.14,34

2.7 HEOM in phase space

The classical analogues of density matrices are distribution functions. One way

of representing quantum density matrices in classical phase space is using the

Wigner transform.35–37 A Wigner function W (q, p) corresponding to a density

operator ρ̂ is given by

W (q, p) =
1

2π~

∫ ∞
−∞

dy〈q − y/2|ρ̂|q + y/2〉eipy/~ (2.70)

or in the momentum representation by

W (q, p) =
1

2π~

∫
dz〈p− z/2|ρ̂|p+ z/2〉e−iqz/~. (2.71)

The Wigner representation of an operator Â is then

AW(q, p) =

∫ ∞
−∞

dy〈q − y/2|Â|q + y/2〉eipy/~ (2.72)

or can be evaluated analogously in momentum eigenstates. Wigner functions

contain all the information present in the original density matrix, and in some

ways resemble classical distribution functions, e.g.∫ ∞
−∞

dp W (q, p) = 〈x|ρ̂|x〉, (2.73)

∫ ∞
−∞

dp

∫ ∞
−∞

dq W (q, p) = 1 (2.74)
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or ∫ ∞
−∞

dp

∫ ∞
−∞

dq AW(q, p)W (q, p) = 〈Â〉 = Tr[Âρ̂]. (2.75)

However, the Wigner function is not an actual classical distribution function for

a quantum system — that would violate the Heisenberg uncertainty principle.

If we took an arbitrary region of phase space and integrated over it to obtain

the probability of finding the particle within a given range of positions and

momenta, not only would we not get the correct value but we could also end

up with negative probabilities.37

Nevertheless, Wigner functions form a bridge between the quantum and

the classical description if appropriate limits are taken. The time evolution

of the Wigner function can be derived by taking the Wigner transform of the

time-evolution equation for the density operator ∂ρ̂/∂t = (i/~)(ρ̂Ĥ − Ĥρ̂) to

obtain23

∂W (q, p)

∂t
= −L̂WW (q, p), (2.76)

where the Wigner transformed Liouvillian is

L̂W =
p

m

∂

∂x
−

∞∑
`=1,odd

[
1

`!

(
i~
2

)`−1
∂`V (q)

∂q`
∂`

∂p`

]
. (2.77)

If we take the classical limit of ~→ 0, then we can truncate the infinite series

at ` = 1 to obtain†

lim
~→0
L̂W ≈ L̂C =

p

m

∂

∂x
− ∂V (q)

∂q

∂

∂p
, (2.78)

which is the classical Liouvillian for a phase space distribution. This truncation

is exact if the potential is a harmonic oscillator.

†It may seem that the series itself is a sufficient justification for truncation in this limit,
but one must also consider the derivatives of the potential and the Wigner function, which
may yield additional powers of ~.23 Nevertheless, this truncation is used in the widespread
chemical dynamics method LSC-IVR.38
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2.7.1 Wigner transform of HEOM

One can directly evaluate the Wigner transform of the terms in the equation

for the time evolution of ADOs (eq. 2.61) to obtain the following relations

− i

~
Ĥ×ρ̂ −→ −L̂WW (q, p), (2.79)

[const] ρ̂ −→ [const] W (q, p), (2.80)

− i

~
q̂×ρ̂ −→ +

∂

∂p
W (q, p), (2.81)

q̂◦ρ̂ −→ 2qW (q, p), (2.82)

which give rise to the phase space formulation of the hierarchical equations of

motion

∂Wn

∂t
= −

(
L̂W +

∞∑
k=0

nkγk

)
Wn +

∞∑
k=0

∂Wn⊕k

∂p

− i

~
(in0C

I
0)2qWn	0

+
∞∑
k=0

nkC
R
k

∂Wn	k

∂p
, (2.83)

which is an exact representation of the quantum HEOM in phase space.

2.7.2 Bopp operator derivation

Directly evaluating Wigner transforms can be cumbersome and there is an

alternative way of obtaining Wigner transformed operators. Assuming that

an operator As(q̂, p̂) has been symmetrised (as described in reference [35]) its

action on a density operator can simply be rewritten using Bopp operators

as35,36

As(q̂, p̂)ρ̂ −→ As

(
q − ~

2i

∂

∂p
, p+

~
2i

∂

∂q

)
W (q, p), (2.84)

and similarly, if the ordering of the operators is reversed,

ρ̂As(q̂, p̂) −→ As

(
q +

~
2i

∂

∂p
, p− ~

2i

∂

∂q

)
W (q, p). (2.85)

Furthermore, this can be applied to products of operators as well, giving

As(q̂, p̂)Bs(q̂, p̂)ρ̂ −→

As

(
q − ~

2i

∂

∂p
, p+

~
2i

∂

∂q

)
Bs

(
q − ~

2i

∂

∂p
, p+

~
2i

∂

∂q

)
W (q, p) (2.86)
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If our operators are symmetric (like q̂ and p̂) or easy to symmetrise, Bopp

operators offer an easier way of expressing the Wigner operators. However, for

more complicated operators, symmetrising the operator may be as complicated

as evaluating the Wigner transform directly.35

2.7.3 Classical HEOM

Upon taking the limit ~ → 0 for the phase space representation of HEOM

(eq. 2.83), we obtain fully classical hierarchical equations of motion

∂Wn

∂t
= −

(
L̂C + nγ

)
Wn +

∂Wn+1

∂p
+
nηγ

β

(
∂

∂p
− βγq

)
Wn−1. (2.87)

All the Matsubara terms from the bath-coordinate time autocorrelation func-

tion α (eq. 2.51) have disappeared, the Liouvillian is now classical (as shown

before in eq. 2.78) and the small angle approximation was used to simplify the

term involving the cotangent. This leads to a one-dimensional hierarchy, just

like in high temperature quantum HEOM in section 2.6.2.
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Computational implementation

of quantum and classical

hierarchical equations of motion

Quantum hierarchical equations of motion (HEOM) were implemented and

tested in their reduced high-temperature form, where Matsubara terms from

the bath time autocorrelation function are omitted. This is presented in sec-

tion 3.1. Classical HEOM in position-momentum phase space are studied in

section 3.2. Following the low-temperature breakdown of the previous imple-

mentation of quantum HEOM, their full form including the Matsubara terms

was investigated in section 3.3. Two anharmonic potentials were studied using

the implemented methods: a Morse oscillator in section 3.3.2 and a fitted OH

potential of a hydrated oxonium ion in section 3.3.3.

21



CHAPTER 3. COMPUTATIONAL IMPLEMENTATION OF HEOM

3.1 High-temperature quantum HEOM

Taking the work of Tanimura and Wolynes as inspiration,18 the high-temperature

quantum HEOM described by eq. 2.65 were implemented.

The density matrix was represented in the basis of position eigenvectors

qi ≡ δ(q − qi). The position operator and the potential energy operator are

diagonal in this representation, giving

∂ρn(qi, qj)

∂t
=−

(
i

~
L̂+ nγ

)
ρn(qi, qj)−

i

~
(qi − qj)ρn+1(qi, qj)

− n0ηγ
2

2
(qi + qj)ρn−1(qi, qj)

− i

~
n~ηγ2

2
cot

(
β~γ

2

)
(qi − qj)ρn−1(qi, qj).

(3.1)

To express the Hamiltonian in this basis, a discrete variable representation

(DVR) matrix for the second derivative (the momentum operator) was used

to obtain39

HS(qi, qj) =

V (qi) + ~2π2

6m(∆q)2
for i = j,

~2
m(∆q)2(i−j)2 (−1)i−j otherwise,

(3.2)

where ∆q ≡ qi+1 − qi is the position grid spacing. The equations of motion

were then integrated in time using the fourth-order Runge-Kutta method.40,41

The general behaviour was investigated in a shifting harmonic potential

as described in section 3.1.1 and position time autocorrelation functions were

calculated (TCFs) in section 3.1.2. As expected, these simulations deteriorated

with decreasing temperature, when the truncation of the bath-coordinate time

autocorrelation function α (eq. 2.51) gives an increasingly large error.

3.1.1 Shifting potential

To test this set-up, we implemented the system presented in Tanimura’s orig-

inal paper,18 which is a harmonic oscillator with a variable linear term given

by

VS(q) =
mΩ2

2
q2 − Fq, (3.3)

where

F =

0 for t < 0

6 for t ≥ 0
, (3.4)
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Ω = 2 and m = 1, all in atomic units. The initial state in the simulation was

the Boltzmann distribution for the isolated system, which is given by

ρ0(qi, qj) =

√
mΩ

2π~ sinh(β~Ω)

× exp

[
− mΩ

2π~ sinh(β~Ω)

[
(q2
i + q2

j ) cosh(β~Ω)− 2qiqj
]]

(3.5)

with all ADOs set to zero (i.e. the factorised initial condition of eq. 2.20).

The system was allowed to equilibrate and then the potential was shifted,

which resulted in damped oscillations. This behaviour is shown in fig. 3.1. The

rate of the damping is affected both by the bath strength η and by the cutoff

frequency γ, which is illustrated in figure 3.2. Both of these trends follow

the expected behaviour. Increasing the strength of the bath coupling leads to

higher damping and so does increasing the cutoff frequency.
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Figure 3.1: A contour plot of a wavepacket being equilibrated with a bath in
a harmonic potential centered at q = 0. At t = 0 the potential is shifted by an
addition of a linear term, which creates a new minimum at q = 3/2 a.u. This is
a reproduction of a similar calculation from Tanimura, Wolynes, Phys. Rev. A,
1991, 43, 4131–4142.
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Figure 3.2: Displacement of the wavepacket centre (average) for a set-up de-
scribed in fig. 3.1 as a function of the bath strength η and the bath cutoff
frequency γ.
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3.1.2 Harmonic potential TCFs

Dynamical properties of quantum systems are often described using time cor-

relation functions (TCFs). These can then be used to predict vibrational

spectra, diffusion coefficients, reaction rates and many other experimental ob-

servables.12,24 We have chosen the position time autocorrelation function as a

good means of probing the system, because it is closely related to the infra-red

vibrational spectrum. The TCF is defined as

Cqq(t) = 〈q̂(τ)q̂(τ + t)〉 = 〈q̂(0)q̂(t)〉 =

= Tr [ρ̂q̂(0)q̂(t)] = Tr
[
ρ̂q̂e+iĤt/~q̂e−iĤt/~

]
, (3.6)

where we have used the fact that for an equilibrium state TCFs are independent

of the time origin.† The last expression can be evaluated by propagating the

density matrix ρ̂q̂ in time using the HEOM and then acting on it by q̂ and

summing the trace for each sampled time.

A useful way of presenting TCFs is by taking their Fourier transform, which

is also called the power spectrum, and is given by

Gqq(ω) =

∫ ∞
−∞

dt eiωtCqq(t). (3.7)

Assuming that the dipole moment is proportional to the displacement of our

system, and employing Fermi’s golden rule, the power spectrum can be related

to the vibrational absorption spectrum as24

I(ω) ∝ ω(1− e−β~ω)Gqq(ω), (3.8)

where the frequency-independent constant of proportionality depends the on

physical parameters of the measurement. All spectra in this work are presented

in arbitrary units.

In the TCF of the harmonic oscillator system described in the previous

section we can clearly see the damping effect of the “random force” of the bath,

which leads to a loss of coherence and decorrelation as shown in figure 3.3.

Increasing the cutoff frequency of the bath γ leads to shorter decorrelation

times. This can also be observed in the spectrum as broadening and shifting

of the peak. It should be noted that the blue shift is due to the renormalisation

potential of eq. 2.10, rather than the dynamics of the bath.

†This is due to the commutation of the time evolution and Boltzmann density operator
for time independent Hamiltonians.
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When the temperature is sufficiently low (β~Ω � 1), we observe non-

physical “beats” which are an artefact of the truncation of the bath-coordinate

time autocorrelation function α (eq. 2.51). At very low temperatures the TCF

simply diverges without ever being damped to zero. In addition, during equi-

libration at low temperatures, the wave packets have a tendency to dissolve,

grow rapidly, change shape or drift, all of which make simulations less stable as

well as non-physical. This is illustrated in figure 3.4 where the TCF becomes

well behaved only for very short times with increasing β. Similar behaviour

was observed for anharmonic potentials in sections 3.3.2 and 3.3.3.
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Figure 3.3: Position time-autocorrelation function and its spectrum for the
harmonic oscillator model system from Tanimura, Wolynes, Phys. Rev. A,
1991, 43, 4131–4142, calculated using high temperature HEOM with truncated
Matsubara terms in the bath time autocorrelation function as a function of
the bath cutoff frequency γ at β = 0.4 a.u.
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Figure 3.4: Normalised position time autocorrelation functions of the har-
monic oscillator from fig. 3.3 showing artificial beats when temperature enters
the quantum regime (β~Ω � 1). These artefacts are a consequence of the
truncation of the Matsubara terms in the bath time autocorrelation function.

3.2 Classical HEOM

Similarly to quantum HEOM in section 3.1, classical HEOM propagation given

by eq. 2.87 was implemented. Wigner functions were represented in a discre-

tised position-momentum phase space to give

∂Wn(qi, pj)

∂t
= −

(
L̂C + nγ

)
Wn(qi, pj)

+
∂Wn+1(qi, pj)

∂p
+
nηγ

β

(
∂

∂p
− βγq

)
Wn−1(qi, pj). (3.9)

To construct the first derivative matrices, an appropriate discrete variable

representation (DVR) matrix was derived analogously to the second derivative

matrix presented in reference [39] to give

Dij =
π

(N + 1)L
×

Y
(

(i+j)π
N+1

)
for i = j,

Y
(

(i+j)π
N+1

)
+ Y

(
(i−j)π
N+1

)
otherwise,

(3.10)

with

Y (x) =
+N sin [(N + 1)x]− (N + 1) sin(Nx)

2(1− cosx)
, (3.11)

where N is the number of grid points and L ≡ qN − q0 is the span of the grid.

Similar tests to those described for quantum HEOM in section 3.1 were

carried out. The response to the shifting harmonic oscillator is presented in

section 3.2.1 and calculation of TCFs in section 3.2.2.
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3.2.1 Shifting potential

Using the same set-up as described in section 3.1.1, a wavepacket was propa-

gated in a shifting potential. Similar studies to those presented for quantum

HEOM were carried out and are shown in figures 3.5 and 3.6 side by side with

the quantum calculations. The trends are the same as before. Increasing bath

strength η and increasing cutoff frequency γ both increase damping. However,

the dynamics is different and the classical wave packet oscillates at a higher

frequency compared to its quantum counterpart. Upon decreasing the tem-

perature, classical HEOM begins to exhibit a similar divergent behaviour to

that of fig. 3.4 which leads to poor stability of the calculations.
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Figure 3.5: A contour plot of the same shifting potential set-up presented in
fig. 3.1 with classical HEOM in blue and the quantum analogue in grey.
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Figure 3.6: Displacement of the wavepacket centre (average) for a set-up iden-
tical to that of fig. 3.2 as a function of the bath strength η and the bath cutoff
frequency γ with classical HEOM in colour and the quantum analogues in grey.
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3.2.2 Harmonic potential TCFs

As shown in figure 3.7, the trend of decreasing decorrelation time with in-

creasing bath strength and cutoff frequency is qualitatively the same as for

quantum HEOM. Classical HEOM, however, shows a blue shift relative to the

quantum result.
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Figure 3.7: Position time autocorrelation functions with changing bath cutoff
frequency γ and their spectra for a set-up identical to fig. 3.3 with classical
HEOM in colour and the quantum analogues in grey.
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3.3 Low-temperature quantum HEOM

As shown in section 3.1, at low temperatures the Matsubara terms in the bath

become necessary for a correct physical description. Therefore, one must use

the full quantum HEOM given by equation 2.61. This requires a new com-

putational treatment since ADOs are now spread across a K + 1 dimensional

space. In addition, it is not computationally feasible to represent all ADOs

up to a hard cutoff L (i.e. with tiers n ≤ L) because their number grows

combinatorially.†

This has been solved by implementing the ADO hierarchy using a Python

dictionary in combination with the pruning mechanism described in section 2.6.3.

Even then, the number of ADOs is quite large and their interaction more

complex, which leads to higher computational requirements. For simulations

with static potentials at low temperatures, however, one can transform the

HEOM into the space of Hamiltonian eigenvectors (of the system Hamiltonian

ĤS). These were obtained by direct diagonalisation of the DVR Hamiltonian

(eq. 3.2). This representation leads to much smaller matrices than in the po-

sition eigenstate representation and makes calculations more tractable. To

improve the rate of equilibration, the initial state for the anharmonic poten-

tials was taken to be the Boltzmann distribution of the DVR energy levels,

as opposed to the analytical distribution for the harmonic oscillator (eq. 3.5).

The exact initial state is, however, irrelevant, assuming that the system is

properly equilibrated before the measurement.

In the next section we have shown that the Matsubara terms correct the

previous non-physical beating in the TCFs. To test our model on anharmonic

potentials we chose two systems from the literature. A Morse oscillator system

investigated by Sakurai and Tanimura20 is presented in section 3.3.2 and a

quartic fit of a hydrated oxonium OH bond potential by Yu and Bowman42 in

section 3.3.3.

†One can easily show that NADOs(L,K) =
∑L
n=0

(
n+K
n

)
. (This is an example of the so

called “stars and bars” combinatorics problem.)
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3.3.1 Harmonic potential TCFs

The importance of Matsubara terms in the bath autocorrelation function α

(eq. 2.51) was demonstrated in figure 3.4, where lowering the temperature

lead to beating or even divergence of the TCF. As figure 3.8 demonstrates,

at β = 10 a.u., which is deep in the “quantum regime”(β~Ω = 20 � 1),

two Matsubara terms are already qualitatively correct, with K = 3 yielding

the converged result. The number of Matsubara modes required increases with

decreasing temperature as expected, since more terms in the exponential series

of α will contribute.
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Figure 3.8: Low temperature correction to a TCF from figure 3.4 at β =
10 a.u. and its spectrum. It can be seen that at this temperature inclusion of
two Matsubara terms already leads to an almost converged result and three
are sufficient. Decreasing temperature leads to an increase in the number of
required Matsubara terms in the bath autocorrelation function.
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3.3.2 Morse potential TCFs

Tanimura and Sakurai have studied HEOM spectra for the Morse potential,20

which is defined as

VMorse(q) = De

(
1− e−αq

)2
, (3.12)

where De is the depth of the potential well and α is the stiffness coefficient.

They chose the values Ω10 = 1600 cm−1 and ∆anh = 16 cm−1 which are related

to potential parameters as ∆anh = ~α2/m and Ωc =
√

2Deα2/m with Ω10 =

Ωc −∆anh. The authors relate these values to the Amide-I mode in peptides.

Calculations were carried out at the temperature of 300 K at which quan-

tum effects are pronounced, with a bath strength η = 0.05Ω10, and with varying

bath cutoff frequency γ = 0.02Ω10, 0.1Ω10 and 0.5Ω10. Sakurai and Tanimura’s

results are compared with our results in figure 3.9. The positions and shapes

of peaks in our quantum HEOM spectra follow the published results closely,

including a minor feature of the 1–2 transition at ∼1585 cm−1. Despite our

calculations being converged with respect to all parameters, the observed mag-

nitude of this transition for the γ = 0.02Ω10 case was smaller than the reported

value. The origin of this discrepancy is currently unknown.

As opposed to Sakurai’s calculations which used a rigid cutoff in L with

an anchor equation, in our simulation we settled with scaling and pruning

due to Shi as described in section 2.6.3. This allows the number of ADOs to

dynamically change during the simulation. Results have been converged both

with respect to the number of Matsubara terms K and the pruning cutoff

(equivalent to converging w.r.t. L). It was found that inclusion of the low

temperature correction due to Tanimura (eq. 2.66) improves theK-convergence

greatly. This effect is particularly pronounced during equilibration, where

the drift of the wave packets described in section 3.1.2 shows relatively slow

convergence without the correction.
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Figure 3.9: Morse oscillator quantum HEOM spectra at 300 K with varying
bath cutoff frequency γ and a magnification of the 1–2 transition. The shaded
areas in the first graph and the blue lines in the second are the results extracted
from Sakurai, Tanimura, J. Phys. Chem. A, 2011, 115, 4009-4022.
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3.3.3 Anharmonic OH model TCFs

Yu and Bowman have recently published their calculation of water cluster

vibrational spectra.42 Most commonly used quantum dynamics methods, in-

cluding thermostatted ring-polymer molecular dynamics (TRPMD), perform

poorly in these strongly anharmonic potentials.42

Raz Benson investigated this behaviour, by fitting the H7O+
3 OH potential

used by Bowman with a quartic polynomial, and calculating its white-noise

TRPMD TCFs. The form of the potential is

VS[a.u.] = 0.1297q2 + c(0.1657q4 − 0.2467q3), (3.13)

where c is the anharmonicity coefficient, which for c = 1 gives a quartic fit

to the original potential. The temperature was set to 100 K and the effective

mass used is m = 1837.3622 a.u.

Benson’s preliminary results show a large blue shift relative to exact quan-

tum results as shown in figure 3.10.† Because we are particularly interested

in the blue shift, we decided to set aren = 0 in our HEOM calculations. Oth-

erwise, the renormalisation potential in eq. 2.10 would lead to a blue shift

simply by increasing the effective spring constant of the potential. In other

terms, we used the convention, in which the renormalisation potential is taken

to be a part of the system potential. Other parameters were set to η = 5 and

γ = 0.1Ωh, where Ωh is the frequency for the harmonic case (c = 0). The

bath strength was chosen such that damping is substantial on the time scale

of ∼500 fs, which is a typical decorrelation time for liquid water.43

One hypothesis on the possible sources of the TRPMD blue shift relative

to DVR is the lack of quantum coherence in PIMD-based methods. HEOM

not coupled to the bath (η = 0) gives results identical to DVR and one of

the effects of coupling a system to a bath is loss of coherence. If this were

a major contributor to the blue shift, we would expect to see HEOM shifted

to higher frequencies relative to DVR. However, it was observed that under

the previously described set-up, inclusion of a bath results in a small red shift

relative to DVR as shown in fig. 3.11. It is not clear at this stage which effects

are simply mechanical and which might be due to loss of coherence, but the

collected data does not support the presented hypothesis.

†Exact quantum results were obtained using discrete variable representation (DVR)39

Hamiltonian and expansion of eq. 3.6 in energy eigenstates.
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Figure 3.10: Benson’s white-noise TRPMD spectra for a quartic fit to a hy-
drated oxonium ion OH potential compared with exact quantum DVR calcu-
lations. The coefficient c defines the level of anharmonicity of the potential
with c = 0 being completely harmonic. TRPMD data are shown in full lines
and DVR in dotted lines.
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Figure 3.11: Comparison of HEOM spectra for non-renormalised potential
with DVR and TRPMD data from figure 3.10. TRPMD is shown in full lines,
DVR in dotted lines and HEOM in dashed lines. Data for c = 0.3 and 0.5
were omitted for clarity, but they show the same trend.
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Chapter 4

Conclusions and further work

Hierarchical equations of motion (HEOM) are an exact description of the prop-

agation of a quantum system coupled to a bath due to Tanimura. They are a

versatile tool for computing dissipative quantum dynamics.14,15,18,19

In this work, a computer program capable of a range of HEOM simulations

was developed. Firstly, a reduced version of HEOM was implemented, omitting

the Matsubara frequency terms in the bath time autocorrelation function. Its

behaviour was investigated under a range of conditions, including a breakdown

for low temperatures. At such conditions, the position time autocorrelation

functions were accurate only for very short times, but showing non-physical

beats at longer times. In addition, the stability of the wave packets during

equilibration was impaired, leading to artificial drifting or changes in shapes.

Taking a Wigner transform of the quantum HEOM followed by a high

temperature limit leads to fully classical HEOM.18 These were implemented

using discretised position-momentum phase space representations of Wigner

functions and a DVR-based first derivative matrices. Results obtained from

these simulations were compared to the quantum results.

To correct for the breakdown of the reduced quantum HEOM, a full version

containing the Matsubara terms of the bath correlation function32 was imple-

mented. It was shown how inclusion of these terms leads to a reduction and

complete removal of the beats in the position time autocorrelation functions

as well as to the mitigation of the instabilities during equilibration.

To test our implementation of HEOM, we have set out to reproduce Morse

oscillator spectra at different bath cut-off frequencies which were originally

presented by Sakurai and Tanimura.20 Our calculations matched the published

results closely.

Leading up to further work, we began an investigation of a hydrated ox-

onium ion OH bond potential from an article by Yu and Bowman.42 They

have shown that this potential is poorly tackled by most currently used quan-
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tum dynamics methods. Raz Benson calculated white-noise thermostatted

ring-polymer molecular dynamics (TRPMD) time correlation functions for a

quartic fit to this potential with varying degrees of anharmonicity. TRPMD

showed an increasingly large blue shift with increasing anharmonicity. This is

a well known shortcoming of all path integral based quantum dynamics meth-

ods. One possible hypothesis was that the blue shift might be simply due to

the omission of quantum coherence in this family of methods. In such case

one would expect that HEOM, which describe coupling to a bath and conse-

quent decoherence exactly, should reproduce at least some of the blue shift.

Our calculations have shown that this is not the case. HEOM leads to a blue

shift if the renormalisation potential is included, which, however, is a mechan-

ical consequence of the set-up. If the renormalisation potential is set to zero,

then a small red shift is observed instead. The origin of this shift could be

purely mechanical or related to the coherence but in the light of this obser-

vation it seems unlikely that quantum coherence would be an major factor in

the blue shift of TRPMD. This result is yet to be compared to related meth-

ods like centroid molecular dynamics (CMD)4,5 and coloured noise TRPMD

(TRPMD+GLE).44

In the following work, we would like to implement TRPMD with an explicit

bath. This would give us access to both exact quantum results for a dissipative

system, where quantum coherence can be quenched, as well as to an entirely

equivalent system-bath ring-polymer set-up. Such a comparison has never

been done and could bring new insight into the approximations inherent to

ring-polymer methods as well as the role of quantum coherence in condensed

phase dynamics.

A slightly more distant goal, which follows from our preliminary classical

HEOM investigations, is implementing Matsubara dynamics with an explicit

bath. Unlike in RPMD, which has been shown to work with an explicit set of

harmonic oscillators,45 in Matsubara dynamics it is impractical to do the same

due to a severe phase problem.8 Therefore, we seek an alternative route by

implementing a bath for Matsubara dynamics using HEOM. Given that Mat-

subara dynamics is the least approximative of all ring-polymer based meth-

ods, such a description would help us to push the understanding of condensed

phased quantum dynamics even further.
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Comput., 2011, 7, 2166–2174.

39



BIBLIOGRAPHY

(23) L. E. Ballentine, Quantum Mechanics: A Modern Development, World
Scientific, 1998.

(24) R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University
Press, 2001.

(25) J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics, Cam-
bridge University Press, 2017.

(26) A. Caldeira and A. Leggett, Physica A, 1983, 121, 587–616.

(27) R. Feynman and F. Vernon, Ann. Phys., 1963, 24, 118–173.

(28) A. Caldeira and A. Leggett, Ann. Phys., 1983, 149, 374–456.

(29) H. Grabert, U. Weiss and P. Talkner, Phys. B Condens. Matter, 1984,
55, 87–94.

(30) A. Ishizaki and Y. Tanimura, J. Phys. Soc. Japan, 2005, 74, 3131–3134.

(31) R.-X. Xu and Y. Yan, Phys. Rev. E, 2007, 75, 031107.

(32) Q. Shi, L. Chen, G. Nan, R.-X. Xu and Y. Yan, J. Chem. Phys., 2009,
130, 084105.

(33) A. Ishizaki and Y. Tanimura, J. Chem. Phys., 2006, 125, 084501.

(34) Y. Tanimura, J. Chem. Phys., 2014, 141, 044114.

(35) R. Kubo, J. Phys. Soc. Japan, 1964, 19, 2127–2139.

(36) M. Hillery, R. F. O’Connell, M. O. Scully and E. P. Wigner, Phys. Rep.,
1984, 106, 121–167.

(37) W. B. Case, Am. J. Phys., 2008, 76, 937–946.

(38) Q. Shi and E. Geva, J. Chem. Phys., 2003, 118, 8173–8184.

(39) D. T. Colbert and W. H. Miller, J. Chem. Phys., 1992, 96, 1982–1991.

(40) W. H. Press, S. A. Teukolsky, B. P. Flannery and W. T. Vetterling,
Numerical Recipes in FORTRAN 77: Volume 1, Cambridge University
Press, 1992.

(41) W. H. Press, W. T. Vetterling, M. Metcalf, S. A. Teukolsky and B. P.
Flannery, Numerical Recipes in Fortran 90: Volume 2, Cambridge Uni-
versity Press, 1996.

(42) Q. Yu and J. M. Bowman, J. Phys. Chem. A, 2019, 123, 1399–1409.

(43) S. Woutersen and H. J. Bakker, Phys. Rev. Lett., 1999, 83, 2077–2080.

(44) M. Rossi, V. Kapil and M. Ceriotti, J. Chem. Phys., 2018, 148, 102301.

(45) I. R. Craig and D. E. Manolopoulos, J. Chem. Phys., 2005, 122, 084106.

40


	Introduction
	Background theory
	Density operators
	Pure states
	Statistical mixtures

	System-bath model
	Feynman-Vernon influence functional
	Bath description
	Hierarchical equations of motion (HEOM)
	Truncating the infinite hierarchy
	Scaling
	K: Truncating Matsubara terms
	L: Truncating ADO level
	Initial state

	HEOM in phase space
	Wigner transform of HEOM
	Bopp operator derivation
	Classical HEOM


	Computational implementation of quantum and classical hierarchical equations of motion
	High-temperature quantum HEOM
	Shifting potential
	Harmonic potential TCFs

	Classical HEOM
	Shifting potential
	Harmonic potential TCFs

	Low-temperature quantum HEOM
	Harmonic potential TCFs
	Morse potential TCFs
	Anharmonic OH model TCFs


	Conclusions and further work

